13.Nuclei
medium

A piece of bone of an animal from a ruin is found to have $^{14}C$ activity of $12$ disintegrations per minute per gm of its carbon content. The $^{14}C$ activity of a living animal is $16$ disintegrations per minute per gm. How long ago nearly did the animal die? ............$years$ (Given halflife of $^{14}C$ is $t_{1/2} = 5760\,years$ )

A

$1672$

B

$2391$

C

$3291$

D

$4453$

(JEE MAIN-2014)

Solution

Given, for $^{14} \mathrm{C}$

$A_{0}=16$ dis $\min ^{-1} g^{-1}$

$A=12$ dis $\min ^{-1} g^{-1}$

$\mathrm{t}_{1 / 2}=5760$ years

Now, $\lambda  = \frac{{0.693}}{{{t_{1/2}}}}$

$\lambda=\frac{0.693}{5760}$ per year

Then, from, $t=\frac{2.303}{\lambda} \log _{10} \frac{\mathrm{A}_{0}}{\mathrm{A}}$

$=\frac{2.303 \times 5760}{0.693} \log _{10} \frac{16}{12}$

$ = \frac{{2.303 \times 5760}}{{0.693}}{\log _{10}}1.333$

$ = \frac{{2.303 \times 5760 \times 0.1249}}{{0.693}}$

$=2390.81 \approx 2391$ years

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.